3x^2+40x+18=0

Simple and best practice solution for 3x^2+40x+18=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+40x+18=0 equation:


Simplifying
3x2 + 40x + 18 = 0

Reorder the terms:
18 + 40x + 3x2 = 0

Solving
18 + 40x + 3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
6 + 13.33333333x + x2 = 0

Move the constant term to the right:

Add '-6' to each side of the equation.
6 + 13.33333333x + -6 + x2 = 0 + -6

Reorder the terms:
6 + -6 + 13.33333333x + x2 = 0 + -6

Combine like terms: 6 + -6 = 0
0 + 13.33333333x + x2 = 0 + -6
13.33333333x + x2 = 0 + -6

Combine like terms: 0 + -6 = -6
13.33333333x + x2 = -6

The x term is 13.33333333x.  Take half its coefficient (6.666666665).
Square it (44.44444442) and add it to both sides.

Add '44.44444442' to each side of the equation.
13.33333333x + 44.44444442 + x2 = -6 + 44.44444442

Reorder the terms:
44.44444442 + 13.33333333x + x2 = -6 + 44.44444442

Combine like terms: -6 + 44.44444442 = 38.44444442
44.44444442 + 13.33333333x + x2 = 38.44444442

Factor a perfect square on the left side:
(x + 6.666666665)(x + 6.666666665) = 38.44444442

Calculate the square root of the right side: 6.200358411

Break this problem into two subproblems by setting 
(x + 6.666666665) equal to 6.200358411 and -6.200358411.

Subproblem 1

x + 6.666666665 = 6.200358411 Simplifying x + 6.666666665 = 6.200358411 Reorder the terms: 6.666666665 + x = 6.200358411 Solving 6.666666665 + x = 6.200358411 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-6.666666665' to each side of the equation. 6.666666665 + -6.666666665 + x = 6.200358411 + -6.666666665 Combine like terms: 6.666666665 + -6.666666665 = 0.000000000 0.000000000 + x = 6.200358411 + -6.666666665 x = 6.200358411 + -6.666666665 Combine like terms: 6.200358411 + -6.666666665 = -0.466308254 x = -0.466308254 Simplifying x = -0.466308254

Subproblem 2

x + 6.666666665 = -6.200358411 Simplifying x + 6.666666665 = -6.200358411 Reorder the terms: 6.666666665 + x = -6.200358411 Solving 6.666666665 + x = -6.200358411 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-6.666666665' to each side of the equation. 6.666666665 + -6.666666665 + x = -6.200358411 + -6.666666665 Combine like terms: 6.666666665 + -6.666666665 = 0.000000000 0.000000000 + x = -6.200358411 + -6.666666665 x = -6.200358411 + -6.666666665 Combine like terms: -6.200358411 + -6.666666665 = -12.867025076 x = -12.867025076 Simplifying x = -12.867025076

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.466308254, -12.867025076}

See similar equations:

| d(x)=-3x+1 | | (N+4)(n+3)= | | 28=4.9*t^2 | | 36=4.9*t^2 | | 11=x+3+3x | | 4(5-10)+4=0 | | y=8x^7-72x^5 | | 56=4.9*t^2 | | .25(x+3)=2(x-3) | | p(x)=x+9 | | (x^2-16)(2x+1)= | | 5(x-20)=3x+60 | | (N+6)(n+9)= | | (-5)+(-6)= | | 61=4.9*t^2 | | 4/1.5 | | 6x^4=60 | | -7v=3v-5(v+3) | | 3x=(90/2) | | 5=4.9*t^2 | | 1/5k-3=2-3/4k | | -7v=3v-5(v-3) | | log(4x+1)+log(5)=log(19x+20) | | 6(2a+8)=4(2a-2) | | -11x-127=3x+41 | | 42x-30= | | 8-3(-8x-1)=-11 | | 89=4.9*t^2 | | 10-(2y-1)=8-3y | | -3a+4b+3a-b= | | (1/(e^4x))=0 | | (1/(e^4x)=0 |

Equations solver categories